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TWO LECTURES ON
NUMBER THEORY, PAST AND PRESENT

by André Weil

To honor the memory of the late Professor Joseph Fels Ritt, his widow

donated sorne funds to endow the Ritt Lecture Séries, to be held at Colwnbia

University on the initiative of its Department of Mathematics. The foliowing

two lectures, given there in March 1972, were part of this séries. As the

reader will see, they were "talks" rather than formai lectures, and no attempt
has been made to modify their somewhat rambling couversational style ; they

are reproduced hère, with very little editing, from the transcript of a tape
recording; only in the second lecture hâve a few additions been made, since

its content had to be curtailed for lack of time. Thanks are due to Professor
H. Clemens and his colleagues ofthe Department ofMathematics at Columbia

University for organizing thèse lectures, taking them on tape and providing

for their transcript.

First Lecture

I hope that seeing the title you were at once convinced that such a topic
could not be covered in two lectures. Perhaps, with optimism, one could

attempt to give a bird's eye view of it in two courses of lectures of one year
each. So my title should not deceive anyone, because it should immediately
be clear that no one could do it justice. The main thesis will be the continuity
of number theory for the last three hundred years and the fact that what we

are doing now is in direct continuation of what has been done by the greatest
number-theorists since Fermât started it ail in the seventeenth century.

Those were comfortable times for m'athematicians, particularly for
number-theorists because they were facing so little compétition. In differ
entialand intégral calculus, even in the days of Fermât, this was not so, and
mathematicians were troubled by some of the things which plague many of
our contemporaries; e.g. priorities. It is interesting to notice, however, that
in number-theory Fermât was essentially quite alone for the whole of the
seventeenth century, and so was Euler for most of the following century,



until Lagrange joined him. Then came Legendre and then, of course, Gauss
who already belongs to the nineteenth century and to the modem era. But
it is very striking that, for such a long time, things were moving so slowly
and in such a leisurely way; one had plenty of time to think about big
problems without being bothered by the idea that maybe the next fellow
was already cutting the grass under your feet. One could do number-theory
in great peace and quiet in those days?indeed a little too much so : Fermât
and Euler both complained of being too isolated in that fîeld. I say again
that this was far from being so in differential and intégral calculus, where
Fermât also made décisive contributions. But in number-theory he was
alone, and this is one reason why he did not write up what he was doing.
At one time he tried to interest Pascal in the subject and persuade him to
collaborate with him, but Pascal was not a number-theorist by tempérament,
he was in bad health, and after a certain moment he became much more
interested in religion than in mathematics. So, what Fermât was doing was

never properly written up and was left for people like Euler to decipher.
Perhaps, before I go on, I ought to say something about what number

theoryis. Housman, the English poet, once got one of those silly letters of
inquiry from some literary magazine, asking him and others to define poetry.
His answer was "If you ask a fox-terrier to define a rat, he may not be able

to do it, but when he smells one he knows it." When I smell number-theory
I think I know it, and when I smell something else, I think I know it too.
For instance, there is a subject in mathematics (ifs a perfectly good and

valid subject and ifs perfectly good mathematics) which is misleadingly
called Analytic Number Theory. In a sensé, it was born with Riemann who

was definitely not a number-theorist; it was carried on, among others, by
Hadamard, and later by Hardy, who were also not number-theorists (I
knew Hadamard well) ; and to the best of my understanding, analytic number

theory is not number-theory. What characterizes it as analysis (analysis

applied to a spécial kind of problem, where arithmetical terms like "primes"
occur frequently) is that it deals mostly with inequalities and asymptotic
évaluations; this, to me, characterizes it as being something else than

number-theory. I would classify it under analysis, just as probability calculus
is a branch of intégration theory with a vocabulary of its own. I will give a

typical example of the deep gulf that séparâtes number-theorists from an

analyst like Hardy. In his famous book about Ramanujan, Hardy could not
avoid discussing the "Ramanujan hypothesis" about the Zl -fonction (the
"discriminant" in the theory of modular functions). I will try to say more
about this later; for the moment it is enough to say that this is a spécifie



function arising from the theory of elliptic functions. Expand it into a

power séries

and write the Dirichlet séries

with the same coefficients. Ramanujan stated that this has an "Euler

product" H Ppip-sy
1

, with
p

for ail primes /?, and conjectured that, for each p, the roots of the quadratic

polynomial Pp (T) hâve the absolute value p i 1/2 (this is obviously équivalent

to the inequality | z(p) | <; 2p 11/2 ). The first statement was proved by
Mordell not very long after Ramanujan; the conjecture is still very much of

an open problem, although some progress has been made. There is not one

among the number-theorists I know who wouldn't be very happy and proud
if he could prove it. But Hardy's remarkable comment is: "We seem to hâve

drifted into one of the back-waters of mathematics." To him it was just
another inequality; he found it curious that anyone could get deeply
interested in it. In fact, he becomes apologetic and explains that, in spite of
the apparent lack of interest of this problem it might still hâve some features

which made it not unworthy of Ramanujan's attention.
This story was meant to illustrate the essential différence in taste between

number-theorists and other mathematicians. There is also something rather
striking in the enthusiasm with which ail those who hâve worked in number
theoryspeakabout it. You will find many such enthusiastic statements in
Euler, several in Gauss, more in Hilbert's foreword to his Zahlbericht, and

so on. I hâve hère a text from the foreword which Gauss wrote for a little
volume where Eisenstein put together some of his contributions to number
theoryandelliptic functions; we hâve already seen above how closely the
two topics are tied up together. Hère are Gauss's words: "The peculiar
beauties of thèse fields hâve attracted ail those who hâve been active there;
but none has expressed this so often as Euler, who, in almost every one of
his many papers on number-theory, mentions again and again his delight
in such investigations, and the welcome change he finds there from tasks

more directly related to practical applications." Then he illustrâtes Euler's



enthusiasm by quoting his words on receiving a paper by Lagrange on
elliptic functions (Gauss is clearly not making any distinction between the

two topics). "My admiration was boundless *, writes Euler, when 1 heard
that Lagrange had thus improved upon my own work."

Having written that, Euler proceeds to improve upon the work of
Lagrange. lt is a beautiful paper, written at a time when Euler was getting
old and was already completely blind; he lost one eye at a comparatively
early âge and became blind when he was less than sixty. He was then in
St. Petersburg, had a number of assistants, and developed a technique for
working with their help. As you know, his complète works are still being
published; at the moment, there are more than sixty volumes, and there is

more to corne. The number-theory alone occupies nearly eight volumes.
As an example of his work, I hâve written hère for you, on the black

board,a formula just as it can be found in Euler:

lt is in a paper read to the Berlin Academy in 1749, but printed only in
1768; the paper (written in French) is entitled Remarques sur un beau

rapport entre les séries de puissances tant directes que réciproques. Many of

you, I hope, hâve recognized hère the functional équation for the zeta
function.In the left-hand side, we hâve formally the quotient C (1 ? fl)/ (w)>

except that Euler has written alternating signs to make the séries more
tractable; the effect of this is merely to multiply Ç (ri) by 1 ? 21~",2

1
~", and

C(l? n) by 1 ? 2n
. In the right-hand side we hâve the gamma function,

which Euler had invented. Euler proves the formula for every positive
integer n (using so-called Abel summation to give a meaning to the divergent
séries in the numerator of the left-hand side), and conjectures its validity
for ail n.

This just gives one example of Euler's discoveries in this field. He started

his mathematical career as a student of the Bernoullis who were definitely
not number-theorists but analysts. Undoubtedly Euler must hâve had it in
his blood, but still it was, in a way, a lucky accident that, as a very young
man (he was not quite twenty at the time) he left Basel for St. Petersburg,

l) «Penitus obstupui... »; Euler was writing in latin.



because no job seemed available elsewhere. St. Petersburg had only just
been founded by Peter the Great (who had died in the meanwhile). Peter

had made plans for an Academy of Sciences, which his widow carried out.

Two of the younger Bernoullis, Nicolas and Daniel, had already gone there ;

Nicolas had died soon after his arrivai. Euler, on getting this appointment,
proceeded by ship down the Rhine, as far as Mainz. Then, largely on foot,
he went to Lubeck where he took another ship to St. Petersburg which at

that time was little more than a glorifled village; things were still rather

chaotic. Soon Euler was given a good salary and some facilities for his work.

Luckily there was a German named Goldbach, now remembered only for
"Goldbach's conjecture" ("every even integer is a sum of two primes"); he

was a kind of amateur, a man interested in mathematics and in many other

things, such as languages. He had known Nicolas Bernoulli in Italy, had

settled down in Russia, and had been instrumental in bringing there, flrst
the brothers Bernoulli, then Euler. He was unofficially employed as secretary
of the Academy of Sciences, lived mostly in Moscow, and we hâve ail the

correspondence between him, the Bernoullis, and Euler. Goldbach, in his

amateurish fashion, was fond of number-theory; it was this correspondence
which obviously started Euler on a long séries of number-theoretical dis
coveries which he used to communicate to Goldbach before publishing them.

One must realize that Euler had absolutely nothing to start from except
Fermat's mysterious-looking statements. Frequently Fermât states flatly
"I hâve proved this", "I hâve proved that," but then he seems to say the

same about "Fermat's équation"

(more about this later). There were among Fermat's statements, along with
the impossibility of that équation, also the fact that every prime of the form

p=4n+l can be written as x2x
2 + y

2
, and similar statements about

conditions for a prime to be of the form x2x
2 +3 y

2
,

x2x
2 +2 y

2
, and so on,

and a statement about every integer being a sum of four squares. Euler was
fascinated by such statements; but he first had to reconstruct for himself
ail the most basic theorems in number-theory. For instance, there was what
is now known as the "little theorem" of Fermât: if p is a prime, then (in
modem notation) xxp ~l~ l n^ 1 modulo p for every integer x, not a multiple
of p. For a man who took up Fermât at that time, one statement might well
seem just as mysterious as the other, in spite of the ease with which one can
verify many of them empirically up to large values. Euler had to reconstruct
everything from scratch, ail the things that are now to be found in ail



elementary textbooks, and which now look so simple on the basis of two
concepts, the group concept and the concept of a prime idéal, lt took him
some time. To begin with, he didn't know that the integers prime to any
modulus n make up a group modulo n; of course he didn't hâve the concept,
but also, at first, the existence of an inverse was not immediately obvious.
Also there are the facts involved in the statement, which to us looks so

elementary, that given a field (e.g. the prime fleld of integers modulo a

prime) any équation in one unknown has at most as many roots in that field
as its degree indicates. This was not proved by Euler and Lagrange until
about 1760, about thirty years after Euler had started working on number
theory and when he was working on far more difficult questions. He had no

way of knowing which questions were simple and which ones were not so.

For instance, the fact that ail primes p = 4n + 1 are of the form x2x
2 +y2

looked neither more nor less difficult to him than the assertion that an

équation of the fifth degree (modulo p, i.e. over a prime field) has at most
five roots. In fact, he would hâve considered the former question as easier

because it involves only squares and the other involves fifth powers; foliowing
Diophantus and Fermât, Euler took the degree as the first élément in the

classification of problems; of course, he could guess that there are other

aspects, but he could not be sure.
So he had to reconstruct everything from scratch as I said. lt is actually

very fascinating to see in his correspondence with Goldbach how his ideas

developed, how he solved one problem after the other. He solves some

question, modulo something else?sometimes he explains "if I could prove
this then I could prove that," and Goldbach has some remarks to make about
it. Goldbach really took an interest even though he does not seem ever to
hâve contributed anything of real value. As a correspondent, however,
he was invaluable to Euler for many years. Later Lagrange appeared on the

scène and started corresponding with Euler; he, of course, was a first-rate
mathematician, and Euler realized this immediately.

For many years Euler worked on pure number-theory, taking as his

starting point only Fermat's work. One main topic was about writing integers
and particularly primes as sums of squares. Take e.g. Fermat's assertion

that any prime pof the form p =4n + 1 can be written as p = x2x
2 + y

2
.

Euler proves it in his correspondence to Goldbach in the year 1749; he

says "at last now I hâve the valid and complète proof for this."
That proof is very interesting; I could describe it and explain what it

has in common with the proof as one would give it now and in what they
differ. But since my time is so limited, I'd rather notice the following case:



Let's take this as being more characteristic in some ways. Diophantus

already knew that there is an identity

which guarantees that the product of two sums of two squares is the sum of

two squares. The identity, as everybody knows, cornes from the fact that

and therefore the product is the norm of the product of thèse two

complex numbers. Quite similarly, for identities of the form/7 = x2x
2 + 3 y

2
,

one will use the fact that x2x
2 + 3y2 is the norm of x +yy/ - 3. Euler

eventually became completely conscious of this and used the fact frequently ;

Lagrange also uses it. On one occasion Euler even takes the trouble to
compliment Lagrange on the fact that he has made good use of irrational
and even, he says, imaginary numbers in his number-theoretic work when

most people would think that this is a completely extraneous matter. This
shows that the theory of algebraic number-fields goes back to fairly early
days; in fact it is tempting to conjecture that already Fermât had used facts

of the same kind, although there is no trace of it so far as I know in his

writings.
At this stage it is worthwhile to take up the question whether Fermât

had really, as he states, proved "Fermat's theorem"; this is not altogether
an idle question, although of course one cannot be sure of the answer. The
statement occurs as a marginal note in his copy of Diophantus; that copy
is lost, but the notes were published by his son after his death; this was not
an unreasonable thing to do, since they had clearly been written down with
the intention of preparing some systematic work on number-theory, which
never took shape. Right at the beginning there occurs the statement that a

cube cannot be the sum of two cubes, nor a fourth power the sum of two
fourth powers, and, he says, similarly for any power beyond the second.
He adds, "I hâve a wonderful proof of that, but there is no room for it in
this margin." He had the proof for fourth powers; indeed, his notes on
Diophantus include a complète proof for the impossibility of the équation

which obviously implies the same for the équation x4x
4 =j4 + z 4

. I would
guess (knowing what we know about his work) that he had also a complète



proof for the équation x3x
3 ?y3 = z

3
; this proof could vvell hâve been the

same that Euler, after many years of work, finally reconstructed in détail.

Interestingly, Euler flrst proved the impossibility of this équation on the
basis of an assumption which (in modem language) amounts to the fact

that the field Q {^J ? 3) of cubic roots of unity has only one idéal class. Later

on, he succeeded in proving that assumption. It is rather clear, in view of
everything that Fermât has written, that he had already the équivalent of
the fact that the class number of Q (>/ ? 3) is 1. If you make the similar as
sumptionabout n-ih roots of unity, then it is not too hard to prove Fermat's
theorem for n-ih powers; of course we know that the assumption is not true
in gênerai. Therefore one might fancy that Fermât had some proof based

on this (or some équivalent) assumption, but then realized that it need not
be valid for ail n. Actually, in his correspondence with foreign mathemati
cians,Fermât never mentioned his équation for gênerai n\ he mentions it
repeatedly for cubes. It seems rather unlikely, too, that he could even hâve

attacked seriously the équation x5x
5 =y5 + z

5
, not merely because of its

difficulty, but for a reason which I wish to explain now, and which has to
do with Fermat's tempérament as a mathematician.

Many people think that one great différence between mathematics and

physics is that in physics there are theoretical physicists and experimentalists
and that a similar distinction does not occur in mathematics. This is not
true at ail. In mathematics just as in physics the same distinction can be

made, although it is not always so clear-cut. As in physics the theoreticians
think the experimentaîists are there only to get the évidence for their théories
while the experimentalists are just as firmly convinced that theoreticians
exist only to supply them with nice topics for experiments. To experiment
in mathematics means trying to deal with spécifie cases, sometimes numerical

cases. For instance an experiment may consist in verifying a statement like
Goldbach's conjecture for ail integers up to 1000, or (if you hâve a big
computer) up to one hundred billion. In other words, an experiment consists

in treating rigorously a number of spécial cases until this may be regarded

as good évidence for a gênerai statement. There are many ways of making
experiments, some of which may involve no little theoretical knowledge ; for
instance nowadays there are people who are greatly interested in G L (n)
and who make experiments by taking first n ? 1 (which is already non
trivialformany problems) and then n ? 2 (which may be quite hard).
Consequently the first-rate mathematician must hâve some strength on

both sides, but still there is a distinction between tempéraments. Now



Fermât was clearly a theoretician. He was interested in gênerai methods and

gênerai principles and not really in spécial cases; this appears in ail his

work, in analysis as well as in number-theory. Euler, on the other hand,

was basically an experimentalist. He was very happy when he could con
jecture a gênerai law, and he was willing to spend a great deal of time to

prove it; but if, instead of a proof, he had merely some really convincing

expérimental évidence, that pleased him almost as well. Therefore he tends

to branch out in ail possible directions, whereas Fermât, being a theoreti
cian, always speaks about "his methods," thus giving us fair indications
about the range of his number-theoretic interests. Essentially he was con
cerned with quadratic forms, chiefly binary, i.e. with quadratic number
fields from the point of view which Gauss was to develop very widely later,
and also with so-called Diophantine équations, but always équations of
genus one. When Fermât speaks of "my method," this means usually a

method for dealing with what is now known as elliptic curves. The équa
tions x4x

4 ?y4 = z 2 andx 3 =y3 +z3 definesuch curves, but x5x
5 =y5 + z5z

5

does not and so would be beyond the scope of Fermat's normal work.
This is the first time that a connection enters between elliptic curves and

number-theory in this very natural way. Some of the most interesting équa
tionsare équations of genus one. This of course does not lead to elliptic
functions until one starts integrating, and to Fermât and Euler there was a

wide gap between differentiation and intégration on the one hand, and
number-theoretical formulas on the other hand, a gap which now from our
présent point of view doesn't exist any. more; we know how to bridge it.
It is striking that Euler became greatly interested in pure number-theory,
particularly in proving Fermat's statements, which included the particularly
difficult équations of genus one, and also became interested in the topic in
at least two more ways. One is indeed closely connected with the équation
x4x

4 ?y4 = z
2

. Already Leibniz seems to hâve conjectured that

cannot be integrated by means of elementary functions (including expo
nentialand trigonométrie functions). But Fagnano ,made the remarkable
discovery that the differential équation



has rational intégrais. This started Euler. According to Jacobi, the birth
dateof the theory of elliptic functions is the day in 1750 when Fagnano's
collection of mathematical papers reached the Berlin academy and was
submitted to Euler for refereeing. It was already printed, but, as the most
prominent member of the Berlin academy, Euler had to say whether the
collection was to receive its officiai approval. He immediately caught fire
and started writing a séries of papers. It is in this connection that Lagrange,
as we hâve said, came to improve upon Euler's work, whereupon Euler
again improved upon Lagrange's work. Euler writes

where P is a polynomial of the fourth degree. He found that the case of the

fourth degree has spécial features which make it possible to find algebraic
intégrais for this kind of équation, and also (as he noticed after a while) for

with arbitrary integers m, n. From our point of view, ail this amounts to the

addition and multiplication of elliptic functions.
Euler became deeply interested in this, and so was Lagrange, without

thinking much about possible connections with number theory. Now if he

had studied Fermat's proof of the impossibility of the équation x4x
4 ?y4

= z2z
2 from that point of view, he would hâve found that this proof included

the formula for the complex multiplication by 1 ± i of this elliptic function.
You hâve only to put together Fermat's formulas to do this. If you iterate

this, you hâve duplication.
The way Fermât does it is the following. First there is the simple formula

which gives complex multiplication by 1 + i. This sends you into the same

curve over the complex numbers, but in this case into another curve over
the rational numbers. Doing the same again with 1 ? i brings you back to
the initial curve. In a sensé he has duplicated the initial given point on the

curve. Furthermore, for reasons connected with this particular curve, the

process can be inverted. Starting from a given point on the curve, assuming
that there is one in rational numbers, you can rationally divide it by 1 ? /

and then again by 1 + / so that you hâve divided it by 2; this gives a point
with smaller coordinates on the same curve. This is the "infinité descent,"






























