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A NEW PROOF OF VINCENT'S THEOREM

by Alberto Alesina and Massimo Galuzzi

Abstract. Vincent's theorem (1836) asserts that, given a real polynomial f(x)
without multiple roots, the substitution

where the c,- are arbitrary positive integers and h is sufficiently large, transforms f(x)
into a polynomial fh+i(x) which has at most one sign variation in the séquence of its

coefficients.
This theorem is basic for highly efficient methods (implemented in modem computer

algebra Systems) to separate the roots of a real polynomial.
In this paper we provide a new simple proof of the theorem, which improves the

known estimâtes of the size of h and can be extended to the case of multiple roots.
We also give an historical survey of the subject.

1. Introduction

The aim of this paper is to give a new and simple proof of Yincent's
theorem. The theorem has an interesting history.

It originally appeared as a note, Sur la résolution des équations numériques,
appended at the end of the sixth édition of Bourdon's Élémens d'algèbre [13],
without explicit mention of Vincent's authorship. Bourdon, who was Vincent's
father-in-law 1

), merely acknowledges his debt to his son-in-law for "plusieurs
améliorations de détail et quelques additions" in the Avertissement at the

beginning of his book.

1) Information about Vincent, who was an influential personality in his time, can be found
in [21] and [31].



The debt must hâve been important, because Vincent later published the

resuit under his name alone: flrst in the Mémoires de la Société royale de

Lille (1834), and afterwards, with some improvements, in the Journal de

mathématiques pures et appliquées (1836) (see [36]).

Unfortunately (for Vincent), Sturm's theorem concerning the number of real

roots of an algebraic équation in a given interval, which originally appeared

without proof in 1829 and was then published in complète form in 1835,

was growing in popularity and ended by superseding Vincent's resuit. And

times were not ripe to understand the remarkable algorithmic potentialities of

Vincent's theorem in comparison with Sturm's (see [7]).

Liouville introduces the publication of Vincent's note in his Journal with

the unflattering remark that the note was being published again, with some

additions to the version which had previously appeared in the Mémoires de

Lille, "dans l'intérêt des professeurs" [36, p. 341, note]. After a subséquent

careful reading of Vincent's paper, Liouville commented 2
): "We do not see

that thèse results, curious as they may be, can be of use in our current

research."

The theorem was forgotten until 1948, when it was published in Uspensky's
book [35]. Uspensky was the first to describe an algorithm based on Vincent's

theorem to separate the roots of a polynomial. But to avoid useless calculations,
he didn't follow Vincent's original approach (through Budan's theorem), as

was pointed out by Akritas ([3], [s]), who also corrected an error in Uspensky's
theorem.

Uspensky, who probably doubted that Vincent's original argument could be

turned into a proof satisfying modem standards, elaborated another ingenious,
but unnecessarily complicated, proof. In Section 6 we show that the essence of

Uspensky's resuit can be obtained through a careful considération of Vincent's

proof.

After Uspensky's book, the theorem appeared in Obreschkoff's book [30],

but without any particular application.

The flrst implementation of an algorithm based on Vincent's theorem in

terms suitable for modem computer algebra was made by Akritas (see [1])

and by Rosen and Shallit ([32], see also [18]). Since then, the considérable

attention devoted to the subject by Akritas ([3], [s], [6], [7], [B], [9]) has given

this algorithm its présent status of a powerful tool of computer algebra Systems.

2
) Quoted in [28, p. 521]. Liouville's text is in a notebook (Ms 3617 (7)) at the Institut

de France (Bibliothèque) in Paris. Quite obviously Liouville does not refer only to the content
of Vincent's theorem, but to the possibility of using Vincent's resuit for the studies about

transcendental numbers he was conducting at that time.



Curiously, ail the proofs before that of Chen-Wang [17], in 1987, hâve

not really used the fact that the complex roots of a real polynomial appear in

conjugate pairs. Nor hâve they considered the effect of the maps of the complex

plane into itself, which are naturally related to Vincent's theorem. Chen's proof,

which also dépends on Obreschkoff 's generalization of Descartes' rule of signs,

only partially exploits the considération of the fractional linear transformations

connected to Vincent's Theorem, and is rather complicated 3
).

Only Bombieri and van der Poorten consider in full clarity [12] the

behaviour of the roots of a polynomial under the action of the fractional
linear transformations related to the problem. Proposition 3.1 of [12] gives

a resuit strictly related to Vincent's theorem, regarding the possibility of

obtaining reduced polynomials (see Remark 8) instead of polynomials having
a single sign variation, but the proof can easily be adapted to the situation of

Vincent's theorem.

Our proof of the theorem was inspired by the géométrie treatment in [12],
and combines the use of geometrical transformations with another resuit of

Obreschkoff [30, 111, §17] for which, in a particular but relevant case, we

provide a new direct proof.
The resulting proof of Vincent's theorem is simple and short (to us), and

can easily be extended to the case of multiple roots 4
).

2. Preliminary facts

As we shall deal extensively with sign variations, we begin with

DEFINITION 2.1. Given a séquence (finite or infinité) of real numbers

ao, ai, a 2 , •••, we say that there is a sign variation between two terms a p

and a q
if one of the following conditions holds :

1) q =p+ 1 and a p
and a q

hâve opposite signs;

2) q>p+l and the terms a p+u aa
p + 2 , ••, aa

q -\ are ail zéro while a p

and a q
hâve opposite signs 5

).

3
) Unfortunately, we haven't yet been able to get Wang's paper [38], and ail our information

dépends on Chen's paper [17]. Hence we refer to Chen-Wang 's theorem.

) For the convenience of the reader, we hâve decided to unify the notation and the symbolism
of a subject which, in more than a century and a half, has been considered in very différent forms
Throughout the paper the séquence of Fibonacci numbers F Oi F u ... begins with 1 instead of 0
Some minor changes hâve been introduced in the statement as well as in the proof of manytheorems to conform to this convention.

5
) Cf. [7, p. 338]



Given an arbitrary real polynomial

the expression (sign) variation of the polynomial will be used as an abbreviation

to mean a sign variation in the séquence of its coefficients.

Example 2.2. The polynomial x
1

— 7x 3

+ 3x 2 +5, whose séquence of

coefficients is { 1, 0, 0, 0, —7, 3, 0, 5} ,
has two variations, while the polynomial

x5x
5

— 1 has one variation.

The idea of relating the number of sign variations of a real polynomial to

the number of its positive real roots goes back to the beginning of modem

algebra. In his Géométrie (1637) Descartes boldly writes 6
) (without any trace

of a proof) : "An équation can hâve as many true [positive] roots as it contains

changes of sign, from + to — or from — to + ; and as many false [négative]

roots as the number of times two + signs or two — signs are found in

succession."

This astonishing claim, which many contemporaries hardly believed, and

sometimes misinterpreted 7
), was subsequently improved by the statement that

the number of sign variations of a real polynomial simply is an upper bound

to the number of positive roots, the différence being an even number.

A complète proof was given by Gauss only 8
) in 1828 !

Descartes' Rule of Signs, as the previous statement is now called, gives

précise information about the positive roots of a polynomial only in two

cases : when there are no variations at ail and therefore the polynomial has

no positive real roots, and when there is a single variation; in the latter case

the polynomial has precisely one positive real root.

A deep generalization of Descartes' Rule of Signs is given by the following
theorem of Budan and Fourier 9

).

6
) [34, p. 160]

7
) See the letter of Carcavi to Descartes ([l9], vol. V, p. 374) and Descartes' answer (ibidem,

p. 397).

8
) See [11] and the review by one of the authors in Mathematical Reviews 94d:01017.

9
) The priority of Budan or Fourier has been a matter of historical dispute for a long time.

Fourier 's point of view is exposed by Navier in the Avertissement de l'éditeur of [11]. From a

modem point of view the controversy appears rather pointless. The mère content of the theorem

given by the two authors is the same, but Fourier emphasizes its benefit to localize the possible
real roots, avoiding the unnecessary calculations that a naive use of Lagrange's "équation au

carré des différences" implies ([ll, p. 28]). Budan, on the other hand, has an amazingly modem

understanding of the relevance of reducing the algorithm (his own word) to translate a polynomial
by x = x +p, where p is an integer, to simple additions [15, pp. 11-16].



THEOREM 2.3. Consider an n-th degree real polynomial f(x) and two

real numbers p,q with p < q. Then the séquence

(2.1)

cannot hâve fewer variations than the séquence

(2.2)

The number of real roots of the équation f(x) = 0 included in the interval

(p,q) equals the différence between the number of variations of the two

séquences (2.1) and (2.2) decreased, if necessary, by an even number.

The choice p = 0 and q = oo immediately yields Descartes' resuit. The

previous theorem provides a better understanding of Descartes' Rule: the rôle

of the single séquence of the coefficients of a polynomial, originally used by

Descartes, appears as the resuit of a very particular situation. Indeed Descartes'

Rule is stated in terms of the number of variations of the séquence

(2.3)

of the coefficients of

(2.4)

as a conséquence of the fact that the search for the positive roots corresponds
to the particular choice of the interval (0, oo).

In fact, for x = 0 the Fourier séquence

reduces to

(2.5)

whose terms differ by a positive factor from the terms of the séquence (2.3).
The séquences (2.3) and (2.5) clearly hâve the same number of variations.
For x = oo the Fourier séquence has no variations. Its rôle disappears and

Descartes' rule may be formulated in terms of a single séquence.
In 1829 Sturm announced the following theorem (proved only in 1835),

which seemed to establish definitely 10
) the accidentai choice of the séquence

(2.3) to investigate the number of positive real roots of the polynomial (2.4).

) The fascinating story of Sturm 's theorem as well as the impressive number of algebraic
researches it originated is described in [33]. For the sake of simplicity, we state the theorem
in the case of the fundamental séquence whose first terms are f(x) and /'(a). Actually Sturm
formulated the theorem in the more gênerai terms of what was later called a "Sturm séquence"
[7, pp. 341-349].



THEOREM 2.4. Let f(x) be an n-th degree real polynomial without multiple
roots and consider the séquence of polynomial s defined recursively by

where qk+\(x) is the quotient of fk(x) by /*+i(jc) and fk+2(x) is the opposite

of the remainder polynomial.
Then the number of zéros of f(x) between p and q (p < q) equals the

number of variations lost by the séquence

when x—p is replaced by x = q .

Sturm's theorem gives such a clear answer to the problem of determining
the number of roots in a given interval that its algorithmic complexity was

not considered relevant until the appearence of computer algebra. Let us see

how it works through an ex ample.

Example 2.5. We take an example from [35]. Given the polynomial

we want to know the number of its positive roots. Since /'(x) — f\{x)
3x 2 +6x—4, and we hâve

we deduce that

Again

and so

Sturm's séquence is given by



For x — 0 the séquence becomes

and it has two variations. The limits as x-^ +00 give the séquence

{^oo+oo^oo^oo}, which has no variations. We conclude that f(x) has

two positive roots.

REMARK 1. It is quite évident that Sturm's theorem also makes it possible

to isolaîe the roots, i.e. to find disjoint intervais each containing a single root.

Consider the previous example. If we evaluate Sturm's séquence at x = 1 we

hâve

Since this séquence has no variations, the number of variations lost in passing

from 0 to 1 is two, and it follows that the positive roots are located in

(0, 1). Let us evaluate the séquence for x=\ following an obvious bisection

method. We hâve

It follows that Sturm's séquence loses one variation in passing from 0 to

and loses one more variation in passing from | to 1. Hence one root is

located in (0, and the other in (^, 1).

Considering the complète answer given by Sturm's theorem, the number of

variations of a polynomial seems to be very weakly connected to the number

of its positive roots, and the 'lucky' case given by 0 or 1 variations looks

like an accident.

However we shall see that this situation may be considered the gênerai

one. Every polynomial has some sort of 'canonical forms' in which it assumes
0 or 1 variations. Moreover, thèse canonical forms can be obtained through
an algorithm considerably less onerous than the one needed to implement
Sturm's theorem.

In the sequel A dénotes the 'least roots distance' of the polynomial /(x),
that is the minimal distance

between distinct roots a, of the équation f(x) = 0
.



3. A NECESSARY PRELIMINARY STEP : LAGRANGE

As Vincent repeatedly states, an important incentive to develop his own

procédure for isolating the roots of an algebraic équation was given by

Lagrange's Traité de la résolution des équations numériques [26], which

collects and improves ail the results in [23], [24], [25].

We begin by describing Lagrange's method for approximating a real root of

an algebraic équation by a continued fraction expansion, in the oversimplifled
case of an algebraic équation which has a single positive root.

Actually Lagrange does much more than that, and via his famous équation

au carré des différences, he gives a method which, in principle, amounts

to a complète solution of the problem of approximating ail the real roots.

Nevertheless his solution is highly impractical and was strongly criticized by

Fourier 11
).

Let xo be the unique positive root of a polynomial f(x) of degree n, and

let the simple continued fraction expansion 12
) of xq be given by

where co > 0 and g > 0 for / > 0. To avoid trivial cases, we suppose that

Lagrange's method (see also [12]) consists in constructing a séquence of

polynomials {fh(x}} defined recursively by

and, for /z > 0,

where Ch is the integer part (> 1 for h > 1) of the unique positive root

of the polynomial fh(x).

Dénote the convergents of xq = [co, ci, c 2,...c

2 , . . .
] by —, —

,
— . . . Then

qo q\ qi

11
) [20, p. 28]. We shall consider this quite interesting question in a subséquent paper.

12
) In this paper we make extensive use of the more familiar properties of continued fractions.

A concise introduction to the subject is given in [12, Section 2].



(setting, as usual, /7_i = 1, =0, p-i =0, q- 2 = 1)

(3.1)

and equality (3.1) shows that 13
)

Each of the polynomials // 7
has a unique positive root, and it will be proved

later on that, for sufflciently large h, they each hâve a single variation in the

séquence of their coefficients.

This apparently surprising resuit may be considered a particular case of

Vincent's theorem which we are going to examine. But let us begin with a

resuit of Lagrange.

A particularly favourable condition occurs when the variation is located

between the coefficients of degree 1 and 0. The possibility of obtaining this

particular situation was explored in [26, Note XII] for a gênerai change of

variables of the form

and for a more gênerai location of the roots, paving the way for future

developments which led to Vincent's theorem.

The change of variables

does not affect the number of variations, consequently Lagrange limited himself
to consider

(3.2)

THEOREM 3.1 (Lagrange). Suppose that the real polynomial f(x) of degree
n has a single real root x 0x 0 in the positive interval (a, b) [neither a or b

being roots], and that no complex root has its real part in the same interval.
If a is chosen sufflciently close to xO,x 0 ,

then the polynomial

has a unique variation, located between the coefficients of degree 0 and 1

-)By (a,b) we dénote the interval whose endpoints are a
y

b, but we do not suppose a<bWe also hâve p i+l = c i+]Pi + p i _ l and q i+] = c i+iqi + qq { _ x .



Proof. Dénote by xi,x 2 , . . .
,

xx
n -\ the other (real or complex) roots

of f(x). Consider first a real root Xj. According to (3.2), Xj is transformed
into

(3.3)

which is positive if and only if Xj G (a,b), that is if and only if Xj = xs.

Hence the f actor x-x0 is transformed into the factor x- £o
,

which has

a sign variation, while every other linear factor x —Xj 0^0) is transformed

into a factor of the form x+p, with p G R +
.

Consider now a complex root x^ = p k + zo>. Under (3.2), x^ is carried

into

(3.4)

By hypothesis p k £ (a, b), (p k — a)(b — p k ) <0, and hence

Since complex roots appear in conjugate pairs, (3.2) transforms a quadratic
factor of f(x) of the form

into a quadratic factor of the form

where R > 0

Therefore, <j)(x) is of the form

where ail the quantities £o, P, -•, R, S, . . . are strictly positive, and

(3.5)

Obviously the coefficients of the polynomial

are strictly positive as well. Let us write this polynomial as



where b
l > 0. Hence, up to the constant X,

If in (3.5) a is so close to x 0x 0 as to verify

that is,

then ail the coefficients of <p(x) ,
with the only exception of the constant term,

are positive. D

Remark 2. The hypothesis on the real parts of the complex roots seems

to be a bit artificial, like an 'ad hoc' expédient. A simpler hypothesis is that

\b — a\ be less than the least distance À of ail the roots, i.e., \b — a\ < À. The

distance between two conjugate roots p±ia is 2a
,

which entails A < 2a .

The maximum value of the product (p — a)(b — p), when a < pb, < b, is

\ib-af. It follows that

and the real part of the transformed roots given by (3.4) is négative.

Remark 3. The hypothèses Lagrange makes in Note XII are very stringent.
By expanding the root into a continued fraction we can find a first integer h

sufficiently large in order to hâve — — <A. This ensures that ail the
Qh Çh-l

real parts of the roots transformed by

are négative. Carrying on the process, we can find a second larger integer

k such that — -^tzl < £m Choosing a between — and and b
4k qk-\ qk qic-i

between — and we can satisfy Lagrange's condition. But isn't the
qh qh-\

knowledge of h and k équivalent to the possibility of approximating a root
as closely as we désire ? At first sight, Note XII appears pointless.



4. VINCENT'S PROOF OF HIS THEOREM

A great merit of Vincent is to hâve understood perfectly the real aim

of Lagrange. The requirement that a polynomial hâve a unique variation at

a prescribed place is too demanding. We can be satisfied with the weaker

requirement that a polynomial hâve a unique variation. This weakening gives

the endpoints of the interval (a,b) a more balanced rôle. Moreover, in

order to carry out a process for isolating the roots of an algebraic équation

f(x) = 0
,

it is necessary to consider not only the behaviour of the polynomials
fh corresponding to the continued fraction expansions [co,ci,C2 5 • • •] which

approximate the roots, but also the other apparently purposeless expansions

- and the related polynomials - which appear out of a systematic search for

the roots 14
).

Ail this will be clarified by Example 5.2. To get to the point in question,

let us give a précise statement.

THEOREM 4.1. Consider an arbitrary real polynomial f(x) of degree n,

without multiple roots, and let 7= [co, Ci, C2, . . .
]

,
where the C( are arbitrary

positive integers for i > 1 and cq>o, the k-th convergent being denoted by

— . Define the séquence of variable substitutions
qk

Then, for h sufficiently large, the polynomial

has at most one variation.

Proof To simplify the problem, we again follow Lagrange, setting

ah =
~ l

,bh=— and making the substitution x<— — —x .
We are

qh-\ qh qh

reduced to studying the variations of the polynomial

(4.1)

14
) Via the Budan-Fourier theorem, for example.



For simplicity of notation, we hereafter dénote a h and bh simply by a and

b9b

9
and fa+i by <f>.

Dénote again by xO,x 0 ,
x u . . . ,

xx
n -\ the roots of f(x), and by A the least

distance between pairs of thèse roots.

The behaviour of real and complex roots is given by formulae (3.3) and

(3.4). But Vincent makes a judicious observation: in order that the root Ç k

obtained from Xk via (3.4) hâve négative real part, it is enough to require that

(4.2)

Considering (4.2) in geometrical terms 15
), we see that it is équivalent to asking

that the point (pi^Gk) of the p- a -plane should lie outside the circle whose

équation is

this circle is centered at (—( — - — ,0) and its radius is \\b — a\.

But

which shows that, as h increases, \\b -a\ — 0. Condition (4.2) is then

satisfied for h sufficiently large.

Assuming that h is large enough to satisfy (4.2) and the further inequality

then at most one real root can belong to the interval (a,b).
Hence, for sufficiently large A, the polynomial (4.1) can be written as

where /?,..., R, S are positive and we take the minus or plus sign in (xdz£ 0 )

according to whether or not there exists a real root x 0 e (a, b) and £ 0 =
X ° ~a

T „ b-x 0

'

Let g(x) be the polynomial whose transformed form under (3.2) is

At this point Vincent observes that

15
) Vincent actually uses a slightly différent argument. He looks at the minimum value of the

product(|-p)(^- p ).



Hence

(4.3)

Since u — >• 0 as h — > 00 ,

and the polynomial (4.1) has the limit

(4.4)

For h large enough, the number of variations of (4.1) is equal to the number

of variations of (4.4). If we hâve the plus sign in the factor x± £ 0 ,
there are

no variations.

Let us consider the case
16

) given by

We hâve

and for k— 1,2, . . . ,

(4.5)

Now

From (4.5) it is clear that, if for a given k the coefficient of x
n k

is négative then ail the subséquent coefficients are négative. Since the constant

terni is négative we hâve exactly one variation.

16
) Obreschkoff's lemma, quoted in Section 6, immediately gives the resuit, but we want to

follow Vincent's argument.



Remark 4. We do not wish to deny Vincent's great value and originality,

yet we find his proof disappointing. In fact, after a careful examination of

a + bx
the effect of the variable transformation x< : to get information about

1 +x
the location of the roots of the polynomial </>(x), Vincent abruptly neglects

what he has obtained and goes on to consider the effect of Taylor's formula

applied to (l+x) nn ~ l
g(b + u). This approach carries no trace of ail his previous

work, and it is évident that the results one can obtain about the size of h are

not best possible. A century later Uspensky modified the proof, but followed

the same path, as we shall see later. Obviously we are not trying to criticize

Vincent, but simply to emphasize the lack of considération of the complex

plane structure.

Remark 5. While continued fractions appear naturally in the search for

the roots of an algebraic équation, and are closely linked to the problem of

separating the roots (see the following example), it is évident that they merely

provide a tool, in the preceding proof, to get two sufficiently close values <?, b.

The theorem may be formulated entirely in terms of the transformation (3.2).

Example 4.2. To see how Vincent's theorem can be used to separate the

roots of an équation, we consider once again the polynomial of Example 2.5.

The polynomial x3x

3

-f 3x 2 —4x+ 1 has two variations, hence the theorem of

Budan and Fourier implies that the équation

(4.6)

has either two or zéro positive roots. By making the substitution x <— 1 + jt,
we obtain the polynomial

which has no variations and consequently has no positive roots. This shows
that the équation (4.6) has no roots greater than 1

.
To consider the possibility

of roots in (0, 1), we make the substitution x<— -^~ . We obtain

This polynomial still has two variations so it must again be subjected to the

transformations x<- 1 +*, x<- . The transformée polynomials are



Each of thèse has only one variation and hence has exactly one positive root.

The first polynomial is obtained by the two successive substitutions

(or directly by x <— )• It follows that its positive root corresponds to a root

of the original équation (4.6) in the interval (0, \). The second polynomial is

obtained by the two identical substitutions

or

Its positive root corresponds to a root of (4.6) in (|, 1).

Remark 6. Looking at the previous example, we can be satisfied since

the équation

has one positive root in each of the intervais (0, |), (^, 1). At this point, to

approximate thèse roots we could use a suitable method such as Newton 's or

Dandelin's. But we can also proceed by using the same method. We know

that the root of (4.6) in the interval (|, 1) corresponds, via the substitution

to the positive root of x
3

+x 2
— 2x— 1 = 0. Inserting the substitutions x <— I+jc,

1

x <— into
I+JC

gives 17
)

Since only the first équation has a variation, the root of the équation (4.6) is

to be found by the transformation

17
) The second susbstitution is useless, but we make it for the sake of clarity.














































